	Enrollment No:		Exam Seat No:								
			C.U.SHAH UNIVERSITY								
	Summer Examination-2018 Subject Name: Data and File Structure										
	Subject Code: 4TE03DFS1			Branch: B.Tech (C	Branch: B.Tech (CE)						
	Semester	r: 3	Date: 02/04/2018	Time: 02:30 To 05	:30 Marks: 70						
	Instruction	ons:									
			•	& any other electronic instr	-						
				wer book are strictly to be ol	=						
			t diagrams and figures uitable data if needed.	(if necessary) at right places	•						
	(4) 1	Assume s	untable data if ficeded.								
0.1		A 44									
Q-1		_	t the following questi	o ns: omplexity of searching an ele	ament in a list? How?	01					
	a) b)			algorithms for sorting.	ment in a list? How!	01					
	c)			ete binary with n nodes?		01					
	d)		o applications of grapl	•		01					
	e)		erations performed on a			01					
	f)		wo simple hash functio			01					
	g)	Define of	data structure.			01					
	h)	Explain	space and time compl	exity.		01					
	i)	What is	hash collision?			01					
	$\mathbf{j})$		applications of Stack.			01					
	k)	Define l				01					
	l)		C' structure of Singly l			01					
	m)		- · ·	f Quick sort algorithm in the	worst case?	01					
	n)	List the	applications of Binary	trees.		01					
Atte	empt any f	our ques	stions from Q-2 to Q-	8							
Q-2		_	t all questions								
	a)	Write a linked li	1 0	d delete an element after a	given node in a singly	7 07					
	b)	Write an	n algorithm for Insertic	on sort method. Explain each	step with an example.	07					

	m) n)	What is the time complexity of Quick sort algorithm in the worst case? List the applications of Binary trees.	01 01
Attemp	pt any f	four questions from Q-2 to Q-8	
Q-2		Attempt all questions	
	a)	Write a program to insert and delete an element after a given node in a singly linked list.	y 07
	b)	Write an algorithm for Insertion sort method. Explain each step with an example.	07
Q-3		Attempt all questions	
	a)	Write differences between simple queue and circular queue. Write an algorithm for insert and delete operations for circular queue.	n 07
	b)	Hash function map several keys into same address called collision. How collision resolution techniques work?	07
Q-4		Attempt all questions	
	a)	What is Stack? List out different operation of it and write algorithm for any two operation.	o 07
		Page	e 1 of 2

	b)	Explain Breadth First Search in graphs with an example? List advantages and disadvantages of Breadth First Search and Depth First Search.	07
Q-5		Attempt all questions	
	a)	Write an algorithm to implement insert and delete operations in a simple queue.	07
	b)	Explain Sequential, Indexed Sequential and Random file organizations.	07
Q-6		Attempt all questions	
V	a)	Briefly explain various linear and non-linear data structures along with their	07
		applications.	
	b)	Write Prim's algorithm for minimum spanning tree with an example.	07
Q-7		Attempt all questions	
~ .	a)	Explain insert and delete operations in AVL trees with suitable examples.	07
	b)	Explain the trace of bubble sort on following data.	07
	,	42,23,74,11,65,58,94,36,99,87	
Q-8		Attempt all questions	
QU	a)	Convert A+(B*C-(D/E^F)*G) infix expression into postfix format showing stack	07
	••,	status after every step in tabular form.	07
	b)	What is binary tree traversal? What are the various traversal methods? Explain	07
	/	any two with suitable example.	

